RFP FAQ Page
This page provides answers to questions specific to each RFP

RFP 19-01: Evaluation of Roadway High Mast Tower Lighting
No FAQ’s currently

RFP 19-02: Technical and Financial Feasibility Study for Installation of Solar Panels at IDOT Owned Facilities
Q: How many facilities does IDOT own?
A: IDOT currently has ~1340 buildings. These properties are all over the state. A full list will be provided to the successful application once they are selected.

Q: Does IDOT have any policy which potentially restricts bidders who worked on their research project if the study turns into a construction or installation project? Specifically, if a company is hired as an independent consultant to conduct a research study, would that limit this company from a bidding process for construction or installation?
A: It would be a conflict for a company/researcher hired to conduct a research study to participate in a bidding process for construction or installation.

Q: Does IDOT have any power purchase agreement (PPA) or procurement agreement that could potentially prevent it from purchasing from other sources or generating on their facilities?
A: At the time of publishing this response, IDOT does not have sufficient evidence to confirm or deny that the PPA’s have any language excluding the sale of power generated on state owned property to any power company.

Q: In our proposal, we plan to include an independent consultant in Illinois to survey 10 IDOT facilities with the research team. This will help to make the data analysis accurate and practical. The expert knowledge of the consultant will be included in research validation as well. Would this limit the consultant from a bidding process for installation on only those 10 facilities or all the IDOT solar related projects in the future?
A: We believe that it would be a conflict for a company/researcher hired to conduct a research study to participate in the bidding process for construction or installation.

Q: In the original RFP document, it refers to state land and right-of-way on pages 1 and 2. The feasibility study on solar farm to an open land is considered as a commercial-level solar analysis, with noteworthy difference from the solar study of building roofs. We want to make sure that IDOT wants to consider the potential feasibility on the state land and right-of-way.
A: IDOT is looking for an all-encompassing analysis that will look at feasibility of solar applications for buildings and in large areas of state-owned right-of-way.

RFP 19-03: Measuring Transport Properties of Portland Cement Concrete Using Electrical Resistivity
Q: Should we narrow down the tests methods in task 2 to evaluate only one for task 3, or should the field evaluation include multiple methods?
A: AASHTO PP 84 provides a framework for specifying tests/criteria to accept/qualify PCC based on performance properties. For specifying a transport-related property, PP 84 references two tests (AASHTO T 358 or TP 199) as follows:
6.6.2. Performance Specification for a Transport-Related Property:

6.6.2.1. A saturated formation F factor value (as determined from electrical resistivity based on T 358 or TP 119) is specified that is related to the desired depth of ionic penetration for a given ion exposure during a specified service life. Details on how this is determined are available in Appendix X2.

Because much of the talk promoting performance-related specifications is with respect to/in terms of PP 84, we anticipate at a minimum either or both T 358 and TP 199 will be evaluated. Additionally, the researcher may be aware of other test methods/devices that would satisfy the goals put forth in PP 84 and propose to include those tests in their evaluation. From there, it is up to the researcher to determine if one or multiple test methods are satisfactory for further evaluation in the field, taking into account, for example, whether the results of different test methods are interchangeable, if one method is more repeatable, more or less sensitive, and so on. Furthermore, it may be found in laboratory testing that multiple test methods should be tried in the field because a significant distinction between methods could not be determined in the laboratory.

Q: Should we ignore the effect of concrete cracking on transport properties? That is, we should consider only the pore structure of the pristine material?
A: Yes, for now, focus on the “pristine material” state. As far as we are aware, much of the focus in QC/QA resistivity testing is in terms of cylinders cast as part of normal QC/QA practices.

Q: For the electrical methods, should we focus on those that can be applied directly in the field (i.e. on a pavement with access to only one side), or also consider global measurements performed on companion samples?
A: As far as we are aware, much of the focus in QC/QA resistivity testing is in terms of cylinders cast as part of normal QC/QA practices. For example, many people suggest the resistivity test can be performed immediately before breaking the cylinder for strength. However, there seems to be some concern regarding how the cylinders are conditioned prior to testing. So one question we might ask ourselves is: are our typical strength specimens acceptable, or should resistivity specimens be cured/conditioned another way? Further, though it may be beyond the scope of this project (we’ll leave that determination up to the researcher): If conditioning of the test specimens is so important, does that preclude testing (in a similar timeframe as the QC/QA cylinders) the actual item poured in the field? What information could be gleaned from testing the actual item vs the test specimens (ex: is presence of reinforcement a problem)?

Q: What is the most typical deicing agent used by IDOT?
A: IDOT uses two:

1. Sodium Chloride (NaCl): This chemical is allowed in the form of either Rock Salt or Evaporated & Solar Salt meeting AASHTO M143 Type I, Grade 1. This chemical may be applied either directly or as brine with a 23% concentration. The effective temperature for its application is ≥ 15 °F.
2. Calcium Chloride (CaCl2): This chemical is applied as brine either directly on bridge decks or as a pre-wetting agent on rock salt for use on pavements. The brine has a 32% concentration. Its use should be limited to the coldest temperatures, below 20 °F, due to its deleterious effects on concrete.

Q: What method(s) does IDOT use to derive chloride profiles from pavements and decks (e.g., drilling samples and chemical evaluation)?
A: Yes, drilling samples and chemical analysis is the primary method IDOT uses to derive chloride profiles. Our method essentially follows AASHTO T 260, Procedure A, specifically Procedure for Acid-Soluble Chloride Ion Content (6.2) using an Automatic Titrator (6.4.3).

Q: Who will identify candidate pavements and decks, and will IDOT provide access and traffic control as needed?
A: IDOT would identify candidate pavements and decks, provide access and traffic control as needed in order to support the project work on the elements, and extract core samples for further processing, as needed.

RFP 19-04: Report Tracking of Public Maintenance Needs/Requests
No FAQ's currently

RFP 19-05: Cone Penetration Testing (CPT) for Illinois Subsurface Characterization and Geotechnical Design
Q: Does IDOT have the 21 sites selected?
A: IDOT has not predetermined any of the sites.

Q: If the research team will need to identify 21 sites, is there any requirement regarding locations, soil types, etc?
A: Once a proposal is selected, ICT Personnel (sponsors, researchers and District geotechnical engineers) will select sites to investigate. These sites may be past, current, and future projects.

RFP 19-06: Policy and Design Guidelines to Plan for Connected and Autonomous Vehicles (CAVs)
Q: In the “Objective” section of the RFP, how should “region” be defined?
A: The region can be defined at the State level or mid-sized MPO level, without respect to any specific MPO.

RFP 19-07: Beneficial Use of Dredged Material from the Illinois Marine Transportation System
No FAQ's Currently